Root Radii and Subdivision for Polynomial Root-Finding
نویسندگان
چکیده
We depart from our approximation of 2000 all root radii a polynomial, which has readily extended Schönhage’s efficient algorithm 1982 for single radius. revisit this extension, advance it, based on simple but novel idea, and yield significant practical acceleration the known near optimal subdivision algorithms complex real root-finding user’s choice. achieve by means saving exclusion tests Taylor’s shifts, are bottleneck root-finders. This relies recipes initialization iterations independent interest. demonstrate progress with numerical tests, provide extensive analysis resulting algorithms, show that, like preceding root-finders, they support Boolean complexity bounds.
منابع مشابه
Root-finding and Root-refining for a Polynomial Equation
Polynomial root-finders usually consist of two stages. At first a crude approximation to a root is slowly computed; then it is much faster refined by means of the same or distinct iteration. The efficiency of computing an initial approximation resists formal study, and the users rely on empirical data. In contrast, the efficiency of refinement is formally measured by the classical concept q whe...
متن کاملPolynomial Root-Finding Algorithms and Branched Covers
Introduction. The problem of devising optimal methods for numerically approximating the roots of a polynomial has been of interest for several centuries, and is far from solved. There are numerous recent works on root-finding algorithms and their cost, for example, the work of Jenkins and Traub [JT70], Renegar [Ren87], Schönhage [Sch82], and Shub and Smale [SS85, SS86, Sma85]. This list is far ...
متن کاملTR-2012003: Root-Finding and Root-Refining for a Polynomial Equation
Polynomial root-finders usually consist of two stages. At first a crude approximation to a root is slowly computed; then it is much faster refined by means of the same or distinct iteration. The efficiency of computing an initial approximation resists formal study, and the users rely on empirical data. In contrast, the efficiency of refinement is formally measured by the classical concept q whe...
متن کاملAccurate polynomial root-finding methods for symmetric tridiagonal matrix eigenproblems
In this paper we consider the application of polynomial root-finding methods to the solution of the tridiagonal matrix eigenproblem. All considered solvers are based on evaluating the Newton correction. We show that the use of scaled three-term recurrence relations complemented with error free transformations yields some compensated schemes which significantly improve the accuracy of computed r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-85165-1_9